
Not Your Father’s Math Library
MAGMA for Dense Matrix Problems
Matrix Algebra on GPU and Multicore Architectures (MAGMA)

Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA)

Jack Dongarra & Stan Tomov
University of Tennessee

Oak Ridge National Laboratory

•  Must rethink the design of our
algorithms and software
! Manycore and Hybrid architectures are

disruptive technology
•  Similar to what happened with cluster

computing and message passing
! Rethink and rewrite the applications,

algorithms, and software

! Data movement is expensive
!  Flops are cheap

Major Changes to Algorithms/Software

2

1.  Synchronization
!  Break Fork-Join model

2.  Communication
!  Use methods which have lower bound on communication

3.  Mixed precision methods
!  SP:DP; 2x speed of ops and 2x speed for data movement

4.  Autotuning
!  Today’s machines are too complicated, build “smarts” into

software to adapt to the hardware

5.  Fault resilient algorithms
!  Implement algorithms that can recover from failures/bit flips

Challenges for Software/Libraries

3

!"#$%&"'()*+#+,,-,'.+/"()"0)12)+(3)456)

*+#+,,-,'.-)78-)9:3+7-;)
• !"#$%!#&'!'(&)!*&!#&%!+)#$(&#,-)!$(./#+)0!
• !12*$!*$!32)!456&6!3)+7!*&!32)!89:;$!<(=&30!
• !>#&!,)!'(&)!)?<*)&3-%!/*32!9@;@>AB7=-C32+)#')'!D9@E!

-

dgemm

-

lu()

dgetf2

dtrsm (+ dswp)

dgemm

\

L

U

A(1)

A(2)
L

U

1. Synchronization (in LAPACK LU)

•  Fork-join, bulk synchronous processing 27

Step 1 Step 2 Step 3 Step 4 . . .

23

"  fork join
"  bulk synchronous processing

5 Allowing for delayed update, out of order, asynchronous, dataflow execution

• Objectives
!  High utilization of each core
!  Scaling to large number of cores
!  Synchronization reducing algorithms

• Methodology
!  Dynamic DAG scheduling (QUARK)
!  Explicit parallelism
!  Implicit communication
!  Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

6

Cholesky
4 x 4

Fork-join
parallelism

PLASMA/MAGMA: Parallel Linear Algebra
s/w for Multicore/Hybrid Architectures

DAG scheduled
parallelism

Time

Pipelining: Cholesky Inversion
3 Steps: Factor, Invert L, Multiply L’s

7

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Pipelined: 18 (3t+6)

Hybrid Algorithms

#  MAGMA uses HYBRIDIZATION methodology based on
–  Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them
–  Properly SCHEDULING tasks' execution over

multicore and GPU hardware components

#  Successfully applied to fundamental
linear algebra algorithms
–  One and two-sided factorizations and solvers
–  Iterative linear and eigen-solvers

#  Productivity
–  High-level
–  Leveraging prior developments
–  Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

A methodology to use all available resources:

8

MAGMA Performance (single GPU)

9

MAGMA Performance (scaling)

10

Cholesky Factorization (DP)
•  Weak scalability on many nodes (NSF Keeneland system;

 node: 2-Intel 6 core & 3-Nvidia M2070)
•  Input size: 34560, 46080, 69120, 92160, 138240, 184320, 276480,
460800

(node: 2-Intel 6 core & 3-Nvidia M2070)

The Need for HP Linear Algebra

$  A model leading to self-consistent iteration computation with
need for HP LA (e.g, diagonalization and orthogonalization)

•  Compute Cholesky factorization of
 B = LLH

•  Transform the problem to a standard
eigenvalue problem
 Ã = L!1AL!H

•  Solve Hermitian standard Eigenvalue problem

 Ãy = "y

•  Transform back the eigenvectors
 x = L!H y

A x = " B x

Generalized Hermitian Eigen-Problem

Hybridization detail

14

Performance Comparison of Generalized
Eigenproblem in Double Complex Precision

!  Test system:
 2 x Intel X5650 (6 core), 2 x Nvidia M2090

Thomas Schulthess
Raffaele Solcà

Time shown, so
lower is better

ELPA solver from:

Two-Stage Approach to Tridiagonal Form
(Communication Reducing)

•  Reduction to band
!  On multicore + GPUs
!  Performance as in the one-sided factorizations

[derived from fast Level 3 BLAS]

•  Band to tridiagonal
!  Leads to “irregular” (bulge chasing) computation

!  Done very efficiently on multicore !
!  GPUs are used to assemble the orthogonal Q

from the transformations
[needed to find the eigenvectors]

Performance results

Keeneland system, using one node!
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)!
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)!

 Tridiagonalization in double precision on Fermi!

2k 3k 4k 6k 8k 10k 12k 14k 16k 18k 20k
0

20

40

60

80

100

120

140

160

180

200

220

Matrix size

G
flo

p/
s

DSYTRD comparison on Keeneland

DSYTRD_2stages_1 GPU
DSYTRD_3 GPU’s
DSYTRD_2 GPU’s
DSYTRD_1 GPU
DSYTRD_MKL (12 threads)

10X

!
#  Communication reducing!

#  Developed routines for multiGPUs "
 obtaining scalable performance"
!
#  The new algorithm (2 stages !
 approach) on a Keeneneland node !
 bring a speedup of ~ 10 X !

Mixed Precision Methods
•  Mixed precision, use the lowest

precision required to achieve a given
accuracy outcome
!  Improves runtime, reduce power

consumption, lower data movement
! Reformulate to find correction to

solution, rather than solution
[!x rather than x].

18

Mixed Precision Solvers

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

960 3200 5120 7040 8960 11200 13120
0

50

100

150

200

250

300

350

400

450

500
Single Prec
Double Prec
Iter Ref

Matrix size

G
Fl

op
/s

"  Similar results for Cholesky & QR

19

20

Collaborators / Support
#  MAGMA team

http://icl.cs.utk.edu/magma/

#  PLASMA team
http://icl.cs.utk.edu/plasma

#  DAGuE team
http://icl.cs.utk.edu/dague/

#  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

21

